붙임2

Research Outcomes Report

Research Outcomes	Dual-MOF-Layered Films via Solution Shearing Approach: A Versatile Platform for Tunable Chemiresistive Sensors
Performance Objectives	Published in a Top 10% JCR Journal
Type of Performance	Research Article(Paper)PatentsResearcher ExchangeResearcher EngagementInformation ExchangeOthers
Description of Performance Type	Published in ACS Nano (JCR top 7.9%)
Research Institutes	Korea Advanced Institute of Science and Technology (KAIST) / Prof. II-Doo Kim / Chungseong Park, et al. (7 others)
Attachments (Image, Photograph, Ect.)	Substrate Precursor Orystallization Crystallization Substrate Output Substrate Substrate Output Substrate Substrate Output Sieving layer effect Sieving layer effect Output Ou
Achievement Date	2025.03.13
Summary of Performance	 Development of a fabrication process for bilayer thin films (<1 µm) by stacking a porous MOF on top of a conductive MOF Selective permeation/concentration of various target molecules depending on the MOF type, with conversion of chemical interactions into electrical signals Process applicable to various substrates, enabling large-area synthesis and expansion into an energy materials platform This work was published in <i>ACS Nano</i>, a high-impact international journal ranked in the top 7.9% by JCR
Description of Performance	 Key Features Development of a bilayer MOF thin film structure by vertically stacking MOFs with different properties on a conductive MOF layer Precise thickness control and large-area synthesis enabled by microfluidics-based solution shearing techniques Performance Fine control of film thickness in the range of several to hundreds of nanometers Simultaneous fabrication of over 300 thin-film devices on a 50×50 mm area Selective permeation/concentration of specific substances depending on the MOF type (e.g., >10× improved selectivity for NH₃ using ZIF-8 2.6× higher sensitivity to H₂S using MIL-53(AI))

Excellence of the Results
- Tunable selectivity, sensitivity, response time, and recovery characteristics through
precise control of MOF layer composition and structure
- Custom material design for specific target molecules by combining MOFs with
diverse pore sizes and adsorption properties
- Demonstrated potential for commercialization through compatibility with roll-to-roll
scalable thin-film fabrication processes
Uniqueness of the Results
- Overcoming the limitations of single-material systems by engineering the interface
between MOF layers, enabling simultaneous enhancement of sensitivity, selectivity,
and recoverability via controlled molecular permeability
- Proposes a new sensitivity enhancement mechanism based on molecular
accumulation, going beyond simple molecular sieving via pore size in conventional
MOF layers